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Methyl (Z)-a-methoxyacrylates are generated in good yields by a mild, stereospecific two-carbon homo-
logation of a wide variety of aldehydes utilizing commercial methyl 2,2-dichloro-2-methoxyacetate and
CrCl2 under Barbier conditions at room temperature. A rational mechanism based upon a Reformatsky-
type addition pathway or an in situ generated (E)-trioxo-chromium vinylidene carbenoid is proposed.

� 2008 Elsevier Ltd. All rights reserved.
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2-Alkoxyacrylic moieties are present in many natural and semi-
synthetic products,1 and have been used as key intermediates for
the preparation of biologically active compounds.2 The derivatives
of arylalkadienes are useful in the treatment of osteoporosis and
other diseases.3 Moreover, the C–C double bond present in these
compounds can be used for diverse transformations such as Claisen
rearrangement,4 Diels–Alder,2a,5 and Heck reactions.2b,6 Several
methods are available in the literature for the preparation of
2-alkyloxy-a,b-unsaturated alkenoates, and most of them rely
either on Horner–Emmons condensations using a-alkoxy phos-
phono acetates,2e–g,3,7 or on reactions of aldehydes with alkyl
esters under basic conditions.1d,2j,8 Other methods used for this
purpose are palladium cross-coupling with vinylic electrophiles9

via alkenyl metallic species10 and phosphine-catalyzed addition
of arylpropiolates to oxygen nucleophiles.11 However, some of
these methods present quite often serious drawbacks such as
multistep transformations, low yields, and more importantly low
selectivity. Moreover, some reaction conditions are not compatible
with common functional groups.

During the past few years we have been engaged with the stud-
ies of organochromium compounds for stereoselective C–C bond
forming reactions.12 In this connection, recently we reported the
preparation of (Z)-methyl 2-methoxy-3-phenylacrylate by the
reaction of benzaldehyde and 2,2-dichloro-2-methoxy acetate in
presence of CrCl2.13 With this background and considering the
importance of methoxyacrylates, we report herein, the generality
of the reaction for the preparation of (Z)-a-methoxyacrylates via
two-carbon homologation of a large panel of aldehydes utilizing
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commercial methyl 2,2-dichloro-2-methoxy acetate (1) and CrCl2

at room temperature (Scheme 1).
The reaction parameters were optimized with equimolar 1 and

p-tolualdehyde (2). Utilizing 4 equivalents of anhydrous CrCl2 at rt
in THF under Barbier conditions, (Z)-a-methoxyacrylate 3
(Z/E > 97:3)14 was obtained in 54% yield. The yield of 3 increased
proportionately to a maximum of 88% with the application of 6
equivalents of CrCl2 (Table 1, entry 1).15 No further improvements
were realized if more equivalents of CrCl2 were used.

Homologations were also observed in EtOAc, benzene, and diox-
ane, but yields were inferior.16 Likewise, attempts to utilize cata-
lytic amounts of CrCl2 regenerated in situ by excess Fe(0) or
Mn(0) proved unsatisfactory, even at elevated temperatures.

With suitable reaction conditions in hand, the scope of our
methodology was then investigated using a panel of structurally
representative aliphatic and aromatic aldehydes. Aromatic alde-
hydes bearing electron-donating substituents, for example,
4-methoxybenzaldehyde (4, entry 2) and piperonal (6, entry 3),
as well as electron-withdrawing groups, for example, methyl 4-
formylbenzoate (8, entry 4) and 4-trifluoromethyl benzaldehyde
(10, entry 5) underwent smooth condensations to give stereoselec-
tively Z-configured adducts 5, 7, 9, and 11, respectively, in good
yields (70–80%). Significantly, our two-carbon homologation is also
compatible with a variety of functional groups as demonstrated by
R H + OCH3Cl
OCH3

1

R
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OCH3CrCl2
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Scheme 1. Stereoselective synthesis of (Z)-a-methoxy-a,b-unsaturated alkenoic
esters.



Table 1
Various functionalized alkenoic esters
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Figure 1. Mechanism for stereoselective Z-alkenoic ester formation.
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the selective transformations of an aromatic ketoaldehyde
(12?13, entry 6) and an aromatic bromide (14?15, entry 7).

It is noteworthy that aliphatic aldehydes like n-hexanal (16)
and hydrocinnamaldehyde (18) were well tolerated and led to
(Z)-acrylates 17 (entry 8) and 19 (entry 9), respectively, without
complications. Heterocyclic aldehyde furfural (20, entry 10) was
also a suitable substrate, and furnished the corresponding (Z)-acry-
late 21 in modest yield (69%) along with recovered starting mate-
rial (22%). Extension of the homologation procedure to a,b-
unsaturated aldehydes (entries 11–13) was satisfactory in terms
of reactivity and stereoselectivity (Z/E � 97:3), although slightly
lower yields were obtained.

In concert with prior mechanistic studies,12,13 we propose that
reaction of 1 with CrCl2 initially generates 2-chloro-2-methoxy-
2-chromium carbenoid 28 (Fig. 1). Addition of this species to the
aldehyde results in a Reformatsky-type adduct 30 (pathway a),
which upon further reduction affords 31. Alternatively, pathway
b could also be invoked for the formation of the intermediate 31,
via the possible formation of a nucleophilic trioxo-vinylidene carb-
enoid 33. Subsequent anti-periplanar E2 elimination through the
less congested conformer 31a preferentially delivers Z-olefin. The
high selectivity observed for the a-methoxyacrylates might be as-
cribed to the high steric hindrance in conformer 31b, which favors
the elimination from the more stable conformer 31a predom-
inantly. At this stage of our investigations, the most probable path-
way a or b is not settled, and attempts to trap the intermediates are
underway in our laboratories.

In conclusion, we have demonstrated and established the scope
and the functional group compatibility of the stereospecific syn-
thesis of (Z)-a-methoxyacrylates via a CrCl2-promoted conden-
sation of methyl 2,2-dichloro-2-methoxy acetate with various
aldehydes. We believe that the modular strategy outlined here will
be a convenient general way to prepare this useful class of highly
functionalized, trisubstituted alkenes.
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